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Abstract. The behaviour of high-order perturbative-variational wavefunctions, with one 
or more free parameters, is studied. A variational criterion, and a criterion based upon 
variation of the norm of the perturbative approximation function with order, are used for 
fixing free parameters. For the quartic anharmonic oscillator, both criteria seem to be 
equivalent. The obtained energies, not only for ground state but also for excited states, 
are in excellent agreement with previous results, although when we go to higher excited 
states we lose precision because of the worsening of the perturbative-variational wavefunc- 
tions. 

1. Introduction 

In monodimensional quantum problems, non-degenerate perturbation theory is, of 
course, one of the most used approximation techniques for broaching eigenvalue 
problems, which cannot be exactly solved. The most important problem with this 
technique is that, in many cases and even for small perturbations, the perturbation 
series for eigenvalues and eigenvectors are divergent (in an asymptotic way). Perhaps 
the longest studied example with this kind of behaviour is the eigenvalue problem for 
the quartic anharmonic oscillator, QAO ( H  = p z  + xz + Ax4). In this case, the obtained 
series, for every eigenvalue and taking Ho = p z  + xz as auxiliary Hamiltonian, are 
asymptotically divergent for every A (Bender and Wu 1969, Reed and Simon 1978). 

Different resummation techniques have been proposed to compensate for this 
behaviour. For the QAO, such techniques as Pad6 approximants (Simon 1970, Pascual 
1979), continued fractions (Reid 1967) and the Bore1 summability method (Graffi er 
a1 1970, Marciani 1984) have been applied, getting improved results for A < 1 but 
encountering big problems for larger A. 

Another procedure, which gives excellent results and also has perturbation theory 
as support, is that due to Killingbeck (1981). The key feature of this method is the 
inclusion of one or more free parameters in the auxiliary Hamiltonian. Once we have 
obtained perturbation series for the chosen eigenvalue, these parameters are used to 
control the series convergence. Returning to the QAO, this is obtained by using, as 
auxiliary Hamiltonian, a harmonic oscillator with free strength a ( Ho = p 2  + a 4 x 2 ) .  
Killingbeck’s criterion for fixing free parameters is related, as we shall see, to the 
eigenvalue power expansion and gives very good results, as we have already mentioned. 

In this comment we investigate high-order perturbative wavefunctions following 
the basic procedure of Killingbeck. First, we shall discuss a criterion, very similar to 
Killingbeck’s, for perturbative wavefunctions. Second, and due to the characteristics 
of perturbative wavefunctions, we shall propose the use of the standard variational 
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criterion for fixing the free parameters, and we shall see that both criteria lead to the 
same results. 

2. Killingbeck’s criterion and the variational criterion 

In a general case, the solution of our problem is posed in the following terms. We 
write H for our problem Hamiltonian and Ho( a )  for the auxiliary Hamiltonian, where 
a denotes all free parameters. First, we use the identity 

H = Ho( a )  + ( H  - Ho( a ) )  (1) 

we shall write q ( a )  and 14j(a)), i = 1,2, .  . . , for the eigenvalues and eigenvectors, 
respectively, of H o ( a ) ,  which are analytically known for every a, and Ej  and I&), 
i = 1,2, .  . . , for the eigenvalues and eigenvectors of H. Then non-degenerate perturba- 
tion theory allows us to express (Galindo and Pascual 1978) the eigenvalues and 
eigenvectors of H as functions of those of H o ( a )  and of the perturbation operator 
H , ( a )  ( H , ( a ) = H - H o ( a ) ) .  Thus 

where 

where for simplicity we have not written the dependence on a. It must be noticed that 
neither Ei nor are functions of a ;  however, when we truncate perturbative series 
(2) or (3) at some N value (Nth-order approximation), the approximations for 
eigenvalues and eigenvectors are dependent on a. As we are not able to 
sum these series exactly, we shall have to take Ei,,(a) and for some N and 
a, as the solution for our eigenvalue problem. We therefore need an adequate criterion 
for selecting these values. 

Killingbeck has suggested fixing free parameters ( a  and N)  in such a way that the 
variation of Ej,,, is equal to zero, i.e. to choose those values that make the perturbative 
correction E!”( a )  vanish. With this condition and working in single precision, the 
obtained results are, for every eigenvalue and A, equal in all (eight) figures to those 
of Banerjee (1978), which we shall hereafter consider exact. For the ground state and 
A = 1, typical values a = 1.46 and N = 12. When we work in double precision, we also 
get coincidence in all meaningful figures (fifteen, in this case) with the exact values, 
although for slightly different values, a = 1.80 and N =40 for the mentioned case. 

In view of the good results for eigenvalues, we may ask what is the matter with 
the corresponding wavefunctions. That is, we want to know if I$i(a))N, with a and 
N given by the Killingbeck criterion, is a good approximation to the exact eigenvector 

This question cannot be answered precisely because we do  not know exact 
solutions. 
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One possibility is to follow a similar procedure to that followed with eigenvalues. 
Then we try to see if the Nth-order perturbation contribution to the wavefunction is 
zero. We do this by studying the norm of the successive contributions to wavefunctions, 
I+IN)(a)). In figure 1, we represent the number of exact figures in the perturbative 
estimation of the eigenvalue, Np, and the wavefunction, - log ,o(+~N’(a) l+~N’(  a)) 
denoted WF, for the QAO with A = 1, over a wide range of N for different states i = 1, 
5, 15 and 21, and choosing an optimum a for each state. From this we find that both 
criteria are not at all equivalent. Moreover, we see for lower states, i = 1 and 5,  the 
minimum contributions to the wavefunctions appear for lower N than those which 
make a perturbative contribution to the energy minimum. However, this behaviour 
turns upside down when we study higher excited states, i = 15 and 21. 

Obviously, the fact that the perturbative contribution to the wavefunction is small 
for the optimum parameters does not necessarily imply that we have got a good 
approximation to the exact wavefunction. Now then, if the approximations are good, 
it is clear that the expectation values of our Hamiltonian between those functions 

20 1 I 

20 40 60 
N N 

1.21 

N N 

Figure 1. Representation of the numbers of figures N ,  and N,, as given by Banerjee (1978), 
when taking variational and perturbative results, respectively (we have reduced the number 
of figures in order to see the stability zones better), and representation of the wavefunction 
- l o g , o ( $ ~ ’ ) l ~ ~ ’ v ’ )  (denoted by WF). Curves are shown for the ground state i =  1 (taking 
A = 1 and values of n from table 1) and for excited states I = 5, 15 and 21 (taking A = 1 
and values of a from table 2) .  The equivalence between the variational method and the 
criterion over the perturbative contributions to the wavefunctions is clear for states i = 1 
and i = 5. For higher excited states, we find a loss of precision of the variational calculation 
in comparison with the perturbative calculation. 
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(properly normalised) must give good estimates for the corresponding eigenvalues. 
Therefore, expectation values may be taken as an additional criterion which allows us 
to gauge how approximate these wavefunctions are to the exact ones. When we make 
this, we are only using the basic piece of the standard variational criterion, for fixing 
free parameters, over these perturbative functions. 

This last statement leads us to the second criterion that we want to study, i.e. the 
possibility of taking the successive perturbative approximations to the wavefunctions 
as trial wavefunctions for a variational calculation. Obviously, CY and N are free 
parameters of these perturbative-variational functions. An important question will be 
whether the application of the variational criterion, with this kind of function, leads 
to similar parameter values as those given by Killingbeck’s criterion, equally well over 
eigenvalues and eigenvectors. 

The application of standard variational criterion is fine for the ground state because, 
in this case, we always obtain strict upper bounds to the ground-state energy. However, 
when we apply it to the excited states, we do not obtain upper bounds unless the trial 
wavefunctions are orthogonal to the subspace containing all eigenvalues lower than 
the one we are studying. This enables us to distinguish the ground state from the 
excited states. 

We shall now analyse results obtained with the QAO. 

3. Ground state of the QAO 

The behaviour of the expectation value 

for the QAO is quite similar, when we change a and N, to that observed for the 
perturbative series. Calculating in double precision and, in general, up to N = 40, we 
see that from an CY value, we obtain the same energy value, equal in all its figures to 
the exact value, from an N value ( N , )  to another ( N > ) .  That is, we obtain a stability 
zone or plateau quite useful for practical purposes. For N greater than N , ,  the 
expectation value increases quickly. 

In figure 1 ,  for the ground state i = 1 ,  we can see this behaviour of N,,  the number 
of exact figures in the variational estimation of the eigenvalue, for A = 1. It is very 
interesting to note, in this case, that the variational plateau coincides with those orders 
which make the perturbative contribution to the wavefunction a minimum. This shows 
that there is an equivalence between variational and Killingbeck’s criteria when we 
apply them over the wavefunction. Moreover, it is evident if we calculate with more 
precision (quadruple precision); we are able to find only one N that makes the energy 
a minimum. 

In table 1 ,  we give the best upper bounds obtained with quadruple precision. These 
results are exactly equal, in all figures, to those obtained in other works (Marciani 
1984, Banerjee 1978), for every A. 

4. Excited states of the QAO 

When we study equation ( 5 ) ,  for QAO and i = 3,5, .  . . (even partity states; we can 
obtain similar results with odd parity states) we find, in a certain way, a similar 
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Table 1. Ground-state energies obtained with perturbative-variational wavefunctions for 
different values of A. We also give the values of the free parameter a and of the order for 
which we get the best upper bound. For all cases, we obtain all the figures given in other 
works. 

A 

10-1 
1 O0 
IO' 
1 02 
1 o3 
1 o4 

LY 

1.10 
1.33 
1.85 
2.70 
3.95 
5.80 
8.55 

N 

23 
36 
35 
36 
36 
36 
38 

Ground-state energy 
~ 

1.007 373 672 081 382 460 533 843 905 9828 
1.065 285 509 543 717 688 857 091 629 2238 
1.392351 6415302918589811267413262 
2.4491740721183875804664845792390 
4.9994175451375920833035627212092 

10.639788711328057722395045173445 
22.861608870272486236810423457297 

behaviour to that found for the ground state. So, once a is fixed, we obtain, in general, 
that the first orders for variational energy are lower than the exact values. However, 
for higher orders, there exists a stability zone, as for the ground state, where we obtain 
for first excited states, i < 10, the exact values given by Banerjee with all their figures; 
however, for i > 10 the precision decreases and for i = 21 we obtain coincidence only 
in the first nine figures. Again, out of stability zone, the variational estimation for 
energy increases quickly. 

In table 2, we give the best variational estimates for some excited states and for 
different A values; we also indicate a and N values for each case. On the other hand, 
we find, again, that the stability zone happens for those orders which make the 
perturbative correction to the wavefunction a minimum. This confirms the equivalence 

Table 2. Variational energies for different excited states and values of A. It can be seen 
that we lose precision when studying higher excited states, but not when we make A bigger. 
It is important to note that the Killingbeck criterion continues to give good results, with 
the same precision, for all the cases studied here (see figure 1). 

State A a N E, 

10-1 1.30 15 5.747 959 268 83356 
3 1 1.85 30 8.655 049 957 75931 

1 o3 5.85 31 74.681 404 200 164 
lo-' 1.30 15 11.098 595 622 6330 

5 1 1.90 31 18.057 557 436 3033 
1 o3 5.91 32 162.802 374 196 97 
lo-' 1.30 15 16.954 794 686 1442 

7 1 1.90 31 28.835 338 459 5042 
1 o3 6.01 32 265.519 951 678 2 
lo-' 1.40 26 44.076 208 925 2941 

1 o3 6.17 28 773.133 614 
lo-' 1.40 24 51.594 517 194 7501 

1 o3 6.23 28 918.418 407 
lo-' 1.43 27 67.359 251 896 5495 

21 1 2.05 33 127.617 777 
10) 6.33 26 1226.552 29 

15 1 1.95 30 81.243 505 050 

17 1 2.00 30 96.129 642 04 
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between the variational and Killingbeck criteria when the last one is made over the 
wavefunction for this kind of trial function. 

Up to now, we have not worried about the orthogonality, to the subspace which 
contains all states with lower energy, necessary for the application of the variational 
criterion to the excited states to give strict upper bounds on the energy of these states. 
Nevertheless, it is evident if our set of trial wavefunctions contains in its domain the 
exact functions (or good approximations to them) then our optimum functions will 
be orthogonal (or almost orthogonal) to each other. A calculation of overlaps between 
our optimum functions for the ground and some excited states (contained in table 2, 
see table 3)  shows that these overlaps are very small. These are, in all cases, about 
lo5 times smaller than the overlaps between the best approximations when we use only 
one oscillator function, and always less than lo-'. These comparisons show, in a 
certain way, that the orthogonality condition is well satisfied. This confirms that, at 
least for the first excited states, we have very good approximations to the exact 
wavefunctions. However, the increasing overlap, when we study higher and higher 
excited states, leads to a worsening for the expectation value. Similarly, the norm 
values of the perturbative contributions to the wavefunction also increase in the 
corresponding plateau, as shown by the progression i = 1,5, 15,21 in figure 1. 

Table 3. Overlap between some states used in the calculations of tables 1 and 2. Results 
show that orthogonality is almost satisfied, although this is lost when we study higher and 
higher excited states. Results are again independent of A. Values in brackets are the 
overlaps between the best variational approximations when we use only one oscillator 
function, with free strength. 

Overlap A = lo- '  h = l  A = 10) 

1.8 x IO-' (4.3 = 10-2) 
3.1 x IO-' ( 7 . 4 ~  io - ) )  
9.7 x 1 0 - l ~  (2.1 x 10-7 
1 . 9 ~ 1 0 - ' ~ ( 1 . 3 ~ 1 0 - ' )  

6 . 4 ~  IO-' ( 8 . 7 ~  
1.1 x 10- '0(1.6x 
2.2 x l o - ' *  (8.7 x 

6.9 x lo-'' (6.3 x lo4 )  
4.0 x IO-" (2.9 x 

1.4x IO-' ( ] .ox 10-2) 

7 . 3 ~ 1 0 - ~  ( 8 . 8 ~ 1 0 - ~ )  2.4x10-'  ( 1 . 1 ~ 1 0 - ~ )  
2.6 x (2.5 x 1.3 x lo-' (3.7 x IO-') 
2.7 x ( 4 . 0 ~  5.4 x (9.7 x 
3 . 4 ~ 1 0 - ' ~ ( 5 . 9 ~ 1 0 - ~ )  1 . 6 ~ 1 0 - ~  ( 1 . 8 ~ 1 0 - ~ )  

6.8x10-'  (1 .4x lO- ' )  2.2xlO-'  (1 .6x10- ' )  
5 . 3 ~ 1 0 - ~  (LIXIO-~) 4 . 9 ~ 1 0 - ~  (1 .9X10-~ )  
3.1 x (1.2 x 1 . 4 ~  IO-' ( 2 . 4 ~  

5.2 x 1 0 - ~  (2.0 x 6.2 x i o - *  (3.5 x 

3 . 7 ~ 1 0 - 5  (1.7x io- ' )  2 . 2 ~ 1 0 ~ ~  (2 .0~10-2 )  

3.6 x IO-" (2.5 x IO-)) 1.3 x lo-' (3.6 x lo-)) 

5. Conclusions 

We want to remark on several important aspects of our findings. Firstly, the inclusion 
of adequate free parameters in perturbative theory enables us to obtain not only good 
estimates for the eigenvalues but also a set of excellent trial wavefunctions, which can 
be fitted by the variational method. It is important to point out that these functions 
not only give good values for the energy but they also have other properties which, at 
least for the QAO, seem to indicate that they are very good approximations for the 
wavefunctions of ground and first excited states. 
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Second, we should like to emphasise, apart from the parallelism found between 
the variational method and the criterion over the perturbative contributions to 
wavefunctions, the behaviour of these criteria compared with the results from the 
Killingbeck criterion. For ground and first excited states, we obtain the same results 
for eigenvalues although the variational method gives them for lower orders than does 
the Killingbeck criterion. This behaviour changes for higher excited states. However, 
for all cases, approximations to wavefunctions given by the criterion over the norm 
are better than those from the Killingbeck criterion, because they give better expectation 
values. It is important to note that the Killingbeck criterion over the eigenvalues gives 
better results for energy than the others when we go to higher excited states, as seen 
in figure 1. 

In conclusion, we remark that it is evident that this treatment cannot easily be 
applied to any kind of Hamiltonian because, to obtain good results, we need to take 
into account very high orders and to calculate many expectation values. For this we 
need an analytical procedure for evaluating these expectation values. Therefore per- 
turbative-variational functions are useful only for the potentials which admit analytical 
treatments for their matrix elements. The practical realisation of the calculation will 
depend not only on the potential but also on the auxiliary Hamiltonian that is used. 
In the same way, the accuracy of the approximation that is used will depend on the 
relation between the auxiliary Hamiltonian and the problem Hamiltonian. This makes 
more difficult the practical application of the method. 
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